Two numerical methods for optimizing matrix stability
نویسندگان
چکیده
منابع مشابه
Optimizing Matrix Stability
Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to the example. Thus although matric...
متن کاملReliable numerical methods for polynomial matrix triangularization
Numerical procedures are proposed for triangularizing polynomial matrices over the eld of polynomial fractions and over the ring of polynomials. They are based on two standard polynomial techniques: Sylvester matrices and interpolation. In contrast to other triangularization methods, the algorithms described in this paper only rely on well-worked numerically reliable tools. They can also be use...
متن کاملStability of Methods for Matrix Inversion
Inversion of a triangular matrix can be accomplished in several ways. The standard methods are characterised by the loop ordering, whether matrix-vector multiplication, solution of a triangular system, or a rank-1 update is done inside the outer loop, and whether the method is blocked or unblocked. The numerical stability properties of these methods are investigated. It is shown that unblocked ...
متن کاملUnconventional Reeexive Numerical Methods for Matrix Diierential Riccati Equations 1 Unconventional Reeexive Numerical Methods for Matrix Diierential Riccati Equations
Matrix Di erential Riccati Equations (MDREs) X = A21 XA11 + A22X XA12X; X(0) = X0; where Aij Aij(t), appear frequently throughout applied mathematics, science, and engineering. MDREs play particularly important roles in optimal control, ltering, estimation, and in two-point linear boundary value problems. In the past a number of unconventional numerical methods that are suited only for time-inv...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2002
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00260-4